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Hydrodynamic processes occurring in welding tanks will play an important role in elec- 
tron-beam welding with deep melting, since the processes involved in the transfer of liquid 
metal in the working zone determine most of the defects appearing in welding seams (cavities 
in the body of a seam, fluctuations in the depth of melting along a seam), and, in many cases, 
the hydrodynamics determine the productivity of the operation. However, a complete investi- 
gation of hydrodynamic processes is greatly complicated by their interaction with heat trans- 
fer, vaporization, and interaction of metal vapor with the electron beam. For this reason, 
certain simplifications must be made at the first stage of the analysis. In this paper, as 
a first approximation we examine the flow of metal along the melting front in electron-beam 
welding with deep melting as a plane flow of a film of melted metal driven by gravity and the 
momentum of the electrons. We determine the stationary distribution function of the current 
and of the temperature corresponding to such a flow, and we investigate the hydrodynamic sta- 
bility of this stationary flow relative to infinitesimal two-dimensional perturbations. The 
scheme of the interaction of the high-density electron beam with the metal, which leads to 
the formation of the liquid film, is shown in Fig. I. The semibounded mass of metal is in- 
troduced with velocity V, oriented along the y axis; the boundary y = no is the surface of 
the phase transition from the solid into the liquid state, and a phase transition from the 
liquid into the gaseous state under the action of the electron beam with energy density q ~ 
109 W/m =, oriented at an angle B to the surface of the metal and distributed uniformly along 
the entire x axis, occurs at y = 4. The surface of the metal forms an angle 5 with the hor- 
izontal. The process occurs in a vacuum. The interaction of the electron beam with the 
metal vapor is ignored. 

I. Derivation of the System of Equations for the Amplitudes of the Perturbations. In 
dime~ionless variables, for a two-dimensional flo--w we have the following Navier--Stokes 
equations, describing the motion of a viscous liquid: 
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where ~ is the stream function and Pl is the pressure in the liquid. 
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In writing down (i.i), the average thickness of the liquid film h and the maximum mag- 
nitude of the x component of the flow velocity of the film Um, attained at the upper bound- 
ary of the film with stationary flow, were used as the characteristic values of the length 
and velocity, respectively. Reynolds number Re = Umh/v , where ~ is the kinematic coeffi- 
cient of viscosity of the melted metal. 

Elimination of pZ from Eqs. (i[i) yields the equation for the stream function 

OA~ O~ 0A~ ~ 0A~ ~ AA~. (1.2) 
O---~ + @ Oz Ox oy = R---~ 

The d i m e n s i o n l e s s  h e a t - c o n d u c t i o n  e q u a t i o n s  f o r  t h e  l i q u i d  and  s o l i d  p h a s e s  a r e  w r i t t e n  
as follows: 

at l  o ~ a t t  oapott _ I At �9 (1.3) 
O~ Oy Ox Ox 8g Be Pr ' 

ots Ots I At$. (1.4) 
0--7+ v 0-~= RePr s 

Here Pr = ~ / a  l is Prandtl's number for the melted metal; Pr s = V/as, a l and a s are the coef- 
ficients of thermal diffusivity of the liquid and solid metal; v = V/Um. The maximum tempera- 
ture of the liquid metal Tm, attained at the upper boundary of the film in stationary flow, 
is used as the characteristic temperature. 

The solutions of Eqs. (1.2)-(1.4) must satisfy a number of boundary conditions. These 
conditions have the following dimensionless form: "attachment" at y = ~o 

0~/@ = O, --o~/Ox = v; ( 1 . 5 )  

melting at y = qo 

t l ~ T m e l t / T m ,  t s : T r n e l t / T m ,  ( 1 . 6 )  

where Tmelt is the melting temperature of the metal; continuity of the energy flux at y = no 

Otl q_ Otl gs [ Ots ~ts I + hpVLmelt  ( 1 . 7 )  
- w  -57 = - + z - T < '  

where nox = 3no/3x, X s and XZ are the coefficients of thermal conductivity of the solid and 
liquid metal, p is the density of the metal (assumed to be the same for the solid and liquid 
phases), Lmelt is the specific heat of fusion; the condition at a metal boundary at infinity 

t s = Too/T,~ at g = - - c o ,  ( 1 . 8 )  

where Too=const; continuity of the flux of matter at y = n 

o~ v ( i  9) 
PF Vn, __ q~_fy __ 7F-- ~ 

where nx = 3n/3x,nT = 3n/3x, Pv is the density of the metal vapor, scaled to the density of 
the liquid metal, Vvn is the normal component of the dimensionless velocity of the metal 
vapor; continuity of the tangential component of the momentum flux at y = n 

- -  -R-e'Ox@ i @ ~12x --Re kclg'-- 8x'J i -?. ~12x-- q 2me/(eLte)'_(pU~) xsi 2~__ 1 + Ilx 2 -4- cos 2~ t ~ @  'Ix ' 

where me and e are the mass and charge of an electron, Ue is the accelerating stress; 
ity of the normal component of the momentum flux at y = 

/ 
2 0~, t - -~ l  2 2 [82~ 

Pt + Re axog t -~- ~lfx 

w h e r e  P l  a n d  Pv a r e  t h e  d i m e n s i o n l e s s  p r e s s u r e s  
c o n t i n u i t y  o f  t h e  e n e r g y  f l u x  a t  y = n 

f U 2 
Q (sin ~ + ~ oos ~) 

V t 

(i.i0) 

continu- 

(1.n) 

in the liquid and in the vapor of the metal; 

~x + ~ '  (i. 12) 

257 



where Q = q/(0Uam), L = Lvap/U=m, Lva p is the specific heat of vaporization of the metal, 
X = %~Tm/(hOUam); equality of the temperatures of the liquid and metal vapor at y = 

t ;  = ~ ,  (1.13) 

where tv is the temperature of the metal vapor; the Mendeleev--Clapeyron equation 

pt = ~ RT~ tWU~,  ( 1 . 1 4 )  

where R is the universal gas constant; the Clasius-Clapeyron equation 

Pl = B / ( p U ~ ) e x p [ - - L v a { ( R T ~ t l ) ]  ~ Y = ~ ,  (I.15) 

where B = po exp [Lvap/(RTb)], T b is the boiling point of the metal at atmospheric pressure 
Po; Jouguet's condition [i] 

V-w = a/Um at ~ y = q, (1.16) 

where a = ~yRTmt v is the velocity of sound in the metal vapor, and u is the adiabatic index. 

Equations (i.i), (1.3), and (1.4) have the following exact time-independent solution: 

~o = A l g  . ~ B l y i - - A J k l e x p  (klg) + D l x ,  
t ;0 = A ~ - ~ B i e x p  (kig), tso = Az + B s e x p  (kay), 

w h e r e  k l  = V h / v ,  k z  = V h / a $ ,  k3 = V h / a s ,  Bx = gh s i n  ~ / ( 2 ~ m ) .  The v a l u e s  o f  t h e  c o e f f i -  
c i e n t s  Ax,  A z ,  A s ,  B i ,  Ba ,  a n d  Dx a r e  f o u n d  f r o m  t h e  b o u n d a r y  c o n d i t i o n s ,  w r i t t e n  i n  t h e  s t a -  
t i o n a r y  c a s e  a t  t h e  b o u n d a r i e s  y = - ~ ,  y = 0 ,  and  y =  l :  Ax = v ( g  s i n  ~/V - -  ~ e / ~ ) / ( V U m  exp  k x ) ,  
w h e r e  xe  = q ~ 2 m e / ( ~ U e ) . s i n  B c o s  fl,  ~ = 0v i s  t h e ' d y n a m i c  c o e f f i c i e n t  o f  v i s c o s i t y  o f  t h e  
liquid metal~ A~ = Tm~it/Tm-- (i --Tmelt/Tm)/(exP k~ -- i), Aa = T~/Tm, B~ = (I --Tmelt/Tm)/ 
(exp k~ -- I), B~= (Tmelt -- T~)/Tm, D~ = --V/U m. 

The temperature Tm, the thickness of the liquid film h, and the velocity of in- 
flow V are also found from the boundary conditions. These quantities depend on the energy 
density q, the angle ~, and the thermophysical characteristics of the metal. Thus, the tem- 
perature T m is determined from the transcendental equation 

q sin ~ = B exp [ - -LVa~(RTm)][c  I (Tin - -  ~a l~  + cs(Tm~t-- T ~ ) + L m e l t + L v a p +  ?BTm/2] /[ (y  + 1 ) F R O m / ? ] ,  

where c~ and c s are the specific heat capacities of the liquid and solid metal. The velocity 
of inflow of metal mass 

V = q sin ~ / { [ ~  (T m - -  Tmelt ) + cs(Tmelt-  T~) ~ Lmel? Lva p ~ ?RTm/2]p}.  

The t h i c k n e s s  o f  t h e  l i q u i d  f i l m  

a; ( c. l Tin-- : reel  t 
h = -V-- In I + c--s Tmel~-T-~Lmel t /C ~"  

It can be shown, however, that stationary flow is unstable for some ratio of the param- 
eters of the problem. We set 

: ~ o ~ 1 ,  t t  : t I o - ~ - t t , 1 ,  t s : t~so-~ts 1, ~ = i l - q 1 ,  

~o = 0 - t - ~ o l ,  P v : P w - } - P v , ,  9 v :  P v o + P v l ,  t v =  t r o u t s ,  

where Pvo, Pvo, and tvo are the characteristics of the metal vapor corresponding to the sta- 
tionary process; quantities labeled with the index 1 are infinitesimal planar periodic per- 
turbations of the following form: 

~Pl ---- f(Y) exp [icz(x - -  c~)], 

t$1 ---- TT(g) exp [icz(x - -  c~)], 
lqo 1 - -  n o exp [icz(x - -  cT)], 

PVl = Pl exp [io:(x - -  c~)], 

t ~ = (Pl:(g) exp [icr - -  c~) l, 

~11 = n exp [icz(x - -  CT) ], 

P ~  = Pl  exp [ia(x - -  cx)], 
tv~ = t I exp [ia(x - -  cT)], 

(i.17) 
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where a is the wave number and c is the phase velocity of the perturbation. 

We substitute (1.17) into Eqs. (1.2)-(1.4). After linearizing, we obtain a system of 
ordinary differential equations for the amplitudes of the perturbations of the stream func- 
tion and temperature of the liquid and solid phases 

�9 ~k i 
(u - c) (I" - ~V) - ~ " / =  ~ e  ( / :v  _ 2~V" + a ' l )  + 5 - ~  ( / ' - ~ V ' ) ;  

, ~ ,, i k  1 ~ 
(u - c) r - t ~ o / =  -= ~ p~ ( ~  - ~ r  ) + ~ r 

- -  CTS --  a Re Pr s ~ ~s, 

(1.18) 

(1.19) 

(I. 20) 

Here and below the prime indicates differentiation with respect to y and u = ~o/~y. 

2. Solution of the System of Equations for the Amplitudes of the Perturbations. We as- 
sume that ~Re is large. Then, Eq. (1.18) is a linear homogeneous ordinary differential equa- 
tion with variable coefficients and the small parameter (a Re) -~ in front of the derivative 
of highest order. We seek the solution, following [2], in the form of a superposition of 
particular solutions 

f(~) = C1/1(~) + C2~2(Y) + C3f3~) + C4/4~) ,  

where fl and f2 are the solutions of the "nonviscous" equation, which is obtained from (1.18) 
by neglecting the viscosity 

(~ - c ) ( /"  - ~V)  - u " /  = O. ( 2 . 1 )  

The s o l u t i o n  o f  Eq.  ( 2 . 1 )  c a n  be  f o u n d  i n  t h e  f o r m  o f  an  e x p a n s i o n  i n  p o w e r s  o f  t h e  d i f f e r -  
e n c e  y --  Yc,  w h e r e  Yc i s  t h e  p o i n t  a t  w h i c h  u ( y c )  = c ,  

/~ = E ak (y - -  yr )r = 2E2/~ In (y - -  y~) + bh (y - -  yr 
h~l  h~O 

The coefficients in the expansions (2.2) satisfy the following recurrence relations: 

a l = l .  a 2 = E 2 ,  a h + l - ~ E k + l + ~  a 2 ( E k _ l _ E . a ~ ) +  ?jaj , 
j=2 

k ~ 2, b o = 1 ,  b I = E 2, 

(2.2) 

k-{- 2 ~, 1 
b h + x = - - ' ~ ' ~ h + 2 + k ( k §  a 2 ( E k - - E o b ~ ) +  ~,~bj - - 2 E  2 ~ ( 2 ] - - l ) a ~ E k - j + 2  , k ~ l ,  

j=1 j::1 
~(k~ (~) 

,~j = a ' E k - j  + (k + 1) (k + 2 - -  2]) Eh-j+2, E~ = k! u' (vc) " 

The o t h e r  p a i r  o f  i n d e p e n d e n t  p a r t i c u l a r  s o l u t i o n s  o f  Eq. ( 1 . 1 8 )  fz  and f4  a r e  f o u n d  i n  
the form 

S u b s t i t u t i n g  ( 2 . 3 )  i n t o  Eq.  ( 1 . 1 8 )  l e a d s  t o  

g o =  +_ V ~(u " c), 

as  a r e s u l t  o f  w h i c h  we o b t a i n  

]~.4 (u - -  c) -5/4 exp [ ~  

[ 

1--m 
g ,  (y) = ~] ( o ~ R e ) ~ - g m ( y ) .  ( 2 . 3 )  

m=o 

t 
5 go kl 

k I 
]/rio: Re (u - -  c) dg -t- -y-  y , 

Yc  

The solutions f3 and f4 near y = Yc are found directly from Eq. (1.18) by introducing 
the new variable z = (y -- yc~/g, g = [u Re u'(yc)] -I/3. If we seek the solution f(y) = X(Z) 
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co 

in the form of a series in powers of e,X(z)= ~s~% (~) , then after equating the coefficients 

in front of the like powers of s, we obtain 

. = z, = t, aa,a = dz V z H I / a  -~-(tz) a,2 dz, 

w h e r e H ( 1 ) ~ / 3  and H(2 )1 /3  a r e  Hankel  f u n c t i o n s .  The a s y m p t o t i c  form o f  t h e  Hankel  f u n c t i o n s  
p e r m i t s  i d e n t i f y i n g  t he  s o l u t i o n s  f ~ , 2 , 3 , 4  w i t h  t h e  s o l u t i o n s  X ~ , 2 , z , 4 ,  as  w e l l  as  d e t e r m i n -  
i ng  the  r e q u i r e d  b r a n c h  f o r  c i r c u m s c r i b i n g  t h e  p o i n t  Yc 

--7n/6 < arg (y --  Y2) < ~/6, 

E q u a t i o n  (1 .19 )  i s  a l i n e a r  inhomogeneous  o r d i n a r y  d i f f e r e n t i a l  e q u a t •  t he  s m a l l  
parameters (~ Re) -~ in front of the derivative of highest order. Its solution is sought in 
the form 

where q)l t,2 
to (1.19), 

i ,, iki ' . 

~Pt4 is the particular solution of Eq. (1.19). 

The solution of Eq. (2.4) is found in the form 

is the fundamental system of solutions of the homogeneous equation, corresponding 

(2.4) 

h ,  (y) = ~ 1-., ((z Re) '-~- hm (y). ( 2 . 5 )  
m~O 

Substitution of (2.5) into Eq. (2.4) leads to 

h o = ~ i P r ( u - c ) ,  

as a result of which we obtain 

�9 P r  k 1 hz = t ho + _ _  

2 h a 2 

q) ~1,2 = (U - -  C) - 1 / 4  e x p  [; t Pr k i 
~fi~ Re Pr  (~t - -  c) dy  + - - - f - - y  . 

Yr 

The particular solution of Eq. (1.19) can be represented by the asymptotic expansion 

(~ Be), m ~ (y). (2.6) 
m = 0  

Substituting (2.6) into (1.19) and retaining the first term in the expansion, we obtain ~14= 
tof/(u -- c). 

The solutions of Eqs. (1.20) are sought using the same method as for the solutions of 
the homogeneous equation (2.4). As a result, the amplitude of the perturbation of the tem- 
perature of the solid metal is represented by the expression 

~ ( y )  = CT~s~(Y) 4- Cs~2(Y) ,  ~s~,~ = exp (-T- l / r-- i~ ReP~c q- Pr~k~/2)y.  

3. Construction of Neutral Curves. We substitute (1.17) into the boundary conditions 
(1.5)-(1.16). After linearizing, we obtain the system of homogeneous algebraic equations. 
It follows from an analysis of this system that p~ = P~ = t~ = 0. For the remaining unknowns 
we have the following conditions: 

l'(O)q- u'(O)n o = O; (3.1) 
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[(0) ---- O; ( 3 . 2 )  

p 

r (0) + tza(O)no---- O; ( 3 . 3 )  

t 

q)s (0) + ts~(O) no = O; ( 3 . 4 )  

, xs [,, ~. , ,  ] q~ ( o ) - ~  q~'.(o) + rio(o)- ~ t,o(o) ,~o = o; ( 3 . 5 )  

q)s(-- co) = O; ( 3 . 6 )  

1"( t)  -~ a21(t) ~- [u"( l )  - -  2 iau ' ( l )  etg (2~)]n = 0; (3.7) 

1'(t) + u ' ( l )n  = o; ( 3 . 8 )  

t t t  

q); (t) -4- [ t / o ( 1 ) -  io@ eosl3/)~] n = O; ( 3 . 9 )  

r t 

qo l (t) + tl o(l)n----- O. ( 3 . 1 0 )  

Equations (3.1)-(3.10) represent a system of homogeneous algebraic equations for the 
ten unknowns C:-Ca, no, n. In order for the system to have a nontrivial solution, it is 
necessary and sufficient that its principal determinant vanish. After estimating the order 
of magnitude of the elements of the determinant, this condition assumes the form 

/~ (~) & (o) - I~ (~) h (o) & (o) (3. ll) 

Equation (3.11) is called the secular equation, and determines the characteristic values of 
the phase velocity c of the perturbations. The ratio fs(0)/f'3(0) is expressed in terms of the 
tabulated Tit'ens functions [3], and the right side of Eq. (3.11) is determined with the help 
of expansions (2.2). If the imaginary part of c is set equal to zero, then relation (3.11) 
will be the equation for the neutral surface, separating the regions of stability and insta- 
bility. 

We are interested in the effect of the parameters q and ~ of the problem on the stabil- 
ity. Selecting a specific metal and fixing the angle of incidence of the electrons B, we 
can obtain the neutral curve in the Re, a plane for different values of q. In Fig. 2 such 
curves, constructed from the numerical solution of Eq. (3.11), are shown for the flow of a 
film of melted iron with ~ = 5 ~ (curve i corresponds to 109 W/m 2, curve 2 corresponds to 1.5. 
109 W/m 2, and curve 3 corresponds to 2.109 W/m2). The following values were used for the 
thermophysical characteristics [4, 5]: p = 7230 kg/m s, c I = 750 J/(kg~ c s= 700 J/(kg'~ 
~ = i0 W/(m.~ ~=40W/(m.~ 2.7.10 ~ J/kg, Lvap = 6.3"106 J/kg, Tmelt = 1810~ 
T b = 3300~ ~ = 2.7.10 -3 kg/(m.sec). The values of the remaining parameters used in the 
calculations were: u e = 25 kV, T~ = 300~ 

For fixed q the magnitude of the Reynolds number is uniquely determined by the angle of 
inclination of the massive metal 6. Thus, the end points of the neutral curves (see Fig. 2), 
obtained for q: = 109 W/m 2, q2 = 1.5"109 W/m 2, q3 = 2"109 W/m 2, cnrrempond to the angle of 
inclination d = 90 ~ , and the angles ~: = 14 ~ , 6= = 34 ~ , ~z = 79 ~ correspond to the left-most 
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point on the curves. This means that, for example, for q = 109 W/m 2 the flow will be stable 
relative to infinitesimal planar perturbations with an inclination of less than 14 ~ . But, 
for q > 2.01.109 W/m 2 (for q = 2.01.109 W/m 2 the neutral curve degenerates into a point), the 
flow will be stable up to a vertical orientation of the film. 
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CALCULATION OF FLOWS OF MELT IN AN AMPULE 

V. V. Kuznetsov UDC 532.526.2 

The problem of determining the dopant distribution in crystallization under conditions 
of reduced gravitational force is of current interest. The physical characteristics of such 
processes are examined in [1-3]. To solve this problem, one must know the flow velocity 
field of the melt. Schemes for solving this problem, primarily for moderate Reynolds and 
Marangoni numbers, are proposed in a number of papers [4, 5]. 

In this paper we propose an asymptotic scheme of stationary thermocapillary convection 
in a cylindrical ampule with large Reynolds and Marangoni numbers; this situation is realized 
in the presence of very high temperature differentials along the lateral wall of the ampule 
and low viscosity of the melt. The flow consists of a collection of Prandtl and Marangoni 
boundary layers, which join to the core of the flow. The axisymmetrical circulating flow in 
the core is calculated using the Prandtl--Batchelor scheme. The thermocapillary convection of 
the melt in the ampule is calculated using this scheme. 

i. We are ~xamining the problem of determining the thermocapillary convection velocity 
field of the melt in a cylindrical ampule with directed crystallization in the absence of 
gravity. The region of flow is illustrated in Fig. i. The volume compression of semicon- 
ducting materials with melting gives rise to voids in the ampule, which are assumed to be dis- 
tributed along the lateral wall of the ampule. The flow is assumed to be laminar, station- 
ary, and axisymmetrical. The assumption of stationariness is explained by the fact that the 
time of crystallization of the entire ampule usually is several hours, so that the velocity 
of the crystallization front is of the order of I0 -~ cm/sec, which is much lower than the 
velocity of thermocapillary convection with a very large temperature drop along the ampule. 

Under the assumptions made above, the flow isdescribed by the system of Navier--Stokes 
equations 

p. ( , ) 
uu~ + wu~ = ~ -~ -  + v u ~  + "-7- u~ - -  - 7  u + u= , 

( Pz ' 
uw~ + w w ~  = - -  - -~  + ~ w ~  + -7-  w~ + w~z}, 

u~+ l-i-u+w~=O, r 

(1.1) 
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